Determination of the thermodynamics of the methyl group in solutions of drug molecules

S. S. DAVIS
Pharmaceutics Research Group, Pharmacy Department, University of Aston in Birmingham, Gosta Green, Birmingham 4, U.K.

Abstract

The contribution of the CH_{3} group to the solution thermodynamics of drug molecules is dependent on whether it is attached to a ring system or is in the terminal position in an aliphatic chain. In the former case group contributions for CH_{3} are very similar to those found for the CH_{2} group. For instance, in partition, the CH_{3} group contribution $\left(\log \mathrm{F}_{\mathrm{CH}_{3}}\right)$ is in the range 0.65 to $0.28(\Delta \mathrm{G}=2.303$ $\mathrm{RT} \log \mathrm{F}_{\mathrm{CH}_{3}}$) and is dependent on the polarity of the organic solvent. The contribution for the terminal aliphatic CH_{3} is not equivalent to the mid chain CH_{2} and a CH_{3} correction factor or $1 \cdot 14$ to $1 \cdot 34$ $\mathrm{kcal} \mathrm{mol}{ }^{-1}\left(4.77\right.$ to $5.61 \mathrm{~kJ} \mathrm{~mol}^{-1}$), has been calculated from alkane solubility data and partition studies. The additivity of group contributions and the correct choice of reference state are also discussed.

Davis, Higuchi \& Rytting (1972) have previously showed that the methylene group contribution to the thermodynamics of solutions of drug molecules could be obtained from activity coefficients, Henry's law constants and partition coefficient data. The free energy of transfer of the CH_{2} group from water to organic solvent ranged from -850 to $-450 \mathrm{cal} \mathrm{mol}^{-1}\left(1 \mathrm{cal} \mathrm{mol}^{-1}=4.186 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$) depending on the nature of the solvent and differences in group values could be rationalized in terms of solvent polarity. In this paper the methyl group is considered.

Many authors have assumed that the CH_{2} and CH_{3} contributions are identical (Hansch \& Anderson, 1967; Kakovsky, 1957; Hersh, 1971). So that for an alkanol $\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OH}\right)$

$$
\begin{equation*}
\Delta \mathrm{G}_{\mathrm{ROH}}=\Delta(\Delta \mathrm{G})_{\mathrm{OH}}+\mathrm{n} \Delta(\Delta \mathbf{G})_{\mathrm{CH}_{2}} \quad . . \quad . . \quad . \tag{1}
\end{equation*}
$$

This is unjustified because in some cases $\Delta(\Delta) \mathrm{G}_{\mathrm{CH}_{8}}$ is twice as large as $\Delta(\Delta) \mathrm{G}_{\mathrm{CH}_{2}}$ (Nemethy, Steinberg \& Scheraga, 1963; Krishnan \& Friedman, 1969).

Firstly the difference between the various CH_{3} groups must be considered. The CH_{3} group can have a number of different positions on a drug molecule and the attention of this paper is directed towards the CH_{3} attached to an aromatic or saturated ring system and CH_{3} in the terminal position in an alkyl chain.

RESULTS AND DISCUSSION

(i) The methyl group attached to a ring system

Substituted benzenes. Aromatic compounds cont,ining methyl substituents have been studied extensively and group contributions can be calculated from literature data (Table 1). The contributions of the methyl and methylene groups to solution and partition behaviour are very similar and the assumption that $\Delta(\Delta G)_{\mathrm{CH}_{8}} \cong \Delta(\Delta \mathrm{G})_{\mathrm{CH}_{8}}$ is valid for ring substituted CH_{3} groups. (The scatter in the results can be attributed

Table 1. Group contributions for CH_{3} and CH_{2} calculated from data on alkyl and methyl substituted benzenes $\left(25^{\circ}\right)$.

Solute	Molar volume (a) $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$	Group volume		$\log _{Y_{W}}^{\infty}(b)$		$\Delta \log Y^{\text {CH }}{ }^{\infty}$	$\log \mathrm{KD}(c)$ octanolwater	$\log \mathrm{FOH}_{2}$	$\log \mathrm{FcH}_{3}$
		CH_{2}	CH_{3}						
Benzene . .	89	一	-	$3 \cdot 40$	-	-	$2 \cdot 14$	-	- 5
Toluene . .	107		18	$3 \cdot 98$	-	0.58	$2 \cdot 71$	-	$0 \cdot 57$
Ethylbenzene	123	16	$\frac{18}{16}$	$4 \cdot 54$	0.56		$3 \cdot 15$	0.44	-
o-Xylene. .	121	-	16	$4 \cdot 46$	-	0.53	2.77	-	0.31
m-Xylene	123	-	17	4.50		0.55	$3 \cdot 20$	-	0.53
p-Xylene. .	124	17	$17 \cdot 5$	4.49	0.54	0.55	3.15	$0 \cdot 47$	0.50
n-Propylbenzene	140 140	17	17	5.08 4.83	0.54	0.48	$3 \cdot 62$	0.47	-
Mean .		$16 \cdot 5$	17.1		0.55	0.54	-	0.45	$0 \cdot 46$

(a) 25° from Hildebrand \& Scott (1950).
(b) From Tsonopoulos (1970)-mean values.
(c) From Leo \& others (1971)-mean or preferred values.
to the experimental difficulties in measuring low water solubilities and high partition coefficients rather than to specific inductive effects.) Indeed, on the basis of group molar volume (Table 1) one would expect that CH_{2} and CH_{3} would yield similar contributions.

Detailed partition results. CH_{3} group contributions ($\log \mathrm{F}_{\mathrm{CH}_{3}}$) obtained from partition studies on methyl substituted aromatic solutes and other ring systems, are listed in Table 2. The original partition experiments were examined critically as before (Davis \& others, 1972). For most solvents, preferred values of $\log \mathrm{F}_{\mathrm{CH}_{3}}$ were selected from consistent data in accurate partition studies and where the CH_{3} is not "masked" or next (ortho) to a polar grouping on the ring. For instance, when the CH_{3} group is next to a polar function (e.g. 2-methylaniline) the group contribution is usually larger than when removed from the polar group (3 or 4 -methylaniline) (Golumbic \& Goldbach, 1951; Lien, Koda \& Tong, 1971). Similarly, a CH_{3} group itself can be masked by the presence of the ring system and give a much smaller contribution, e.g. 2-methyl-8-hydroxyquinoline.

The preferred $\log \mathrm{F}_{\mathrm{CH}_{3}}$ values for a given solvent are essentially constant. A similar conclusion was reached by Fujita, Iwasa \& Hansch (1964) who studied only the octanol-water partition system. The mean preferred values of $\log \mathrm{F}_{\mathrm{cH}_{3}}$ (Table 3)

Fig. 1. Correlation between CH_{3} and CH_{2} group contributions from partition studies. Abscissa $\log \mathrm{FcH}_{3}$. Ordinate $\log \mathrm{FcH}_{3}$. Numbers refer to solvents listed in Table 3. Solid line: Regression line (eqn 2). Dotted line: $\log \mathrm{FCH}_{3}=\log \mathrm{FCH}_{2}$.

Table 2. The methyl group contribution (ring systems) to partition between water and organic solvent.

Solvent	$\log \mathrm{FcH}_{3}$	Solute system	Reference
Cyclohexane	0.85	2-Methylphenol	Golumbic \& others (1949)
	0.76	Alkylbenzenes	Currie \& others (1966)
	0.74 (a)	2,5-Methylphenol	\} Golumbic \& others (1949)
	0.74 (a)	2,4-Methylphenol	$\}$ Burton \& others (1964)
	0.73	2-Methylsalicylaldehyde	Burton \& others (1964)
	0.71	4-Methylphenols	Higuchi \& others (1969)
	0.70	3-Methylsalicylaldehyde	Burton \& others (1964)
	0.68	4-Methylchlorophenol	Golumbic \& others (1949)
	0.66 (a)	2,6-Methylaniline	Golumbic \& Goldbach (1951)
	0.65	2-Methylaniline	Golumbic \& Goldbach (1951)
	0.65	2-Methyl conjugated compounds	$\left\{\begin{array}{l}\text { Currie \& others (1966) } \\ \text { Lough \& others (1968) }\end{array}\right.$
	0.65*	4-Methyl conjugated compounds	$\{$ Currie \& others (1966)
			\{Lough \& others (1968)
	0.63 (a) $0.62 *$	3,5-Methylphenol	\} Golumbic \& others (1949)
	0.61 (a)	2,5-Methylaniline	\{ Golumbic \& Goldbach (1951)
	0.61 (a)	2,4-Methylaniline	SGolumbic \& Goldbach (1951)
	0.61*	3-Methylaniline	Golumbic \& Goldbach (1951)
	0.60	2-Methylnitrostyrenes	\{ Currie \& others (1966)
	$0 \cdot 60^{*}$	4-Methylnitrostyrenes	\{Lough \& others (1968)
	0.59 (a)	3,5-Methylaniline	Golumbic \& Goldbach (1951)
	0.57*	3-Methylphenol	Golumbic \& others (1949)
	0.54*	4-Methylaniline	Golumbic \& Goldbach (1951)
	0.48	3-Methylbenzaldehyde	\}Burton \& others (1964)
	0.16	2-Methylbenzaldehyde	\}Burton \& others (1964)
Heptane	$\begin{aligned} & 0.57^{*} \\ & 0.57^{*} \end{aligned}$	3-Methylphenol 3-Methylaniline	\} De Ligny \& others (1966)
Carbon tetrachloride	$\left.\begin{array}{l} 0.66^{*} \\ 0.65^{*} \\ 0.61 \\ 0.58 \end{array}\right\} \text { 4-Methyl-8-hydroxyquinoline }$		$\left\{\begin{array}{l} \text { Mottola \& Freiser (1966) } \\ \text { Fresco \& Freiser (1964) } \\ \text { Fresco \& Freiser (1964) } \\ \text { Mottola \& Freiser (1966) } \end{array}\right.$
Chloroform	0.76	3-Methylhydrobromides	Quintana \& Smithfield (1967)
	$0 \cdot 70$	2-Methylsulphonamides	Kakeya \& others (1969)
	0.64	2-Methyl-8-hydroxyquinoline	Stary (1964)
	0.63*	4-Methyl-8-hydroxyquinoline	Fresco \& Freiser (1694)
	0.63*	Methyl-8-hydroxyquinolin	Mottola \& Freiser (1966)
	0.62*	5-Methyl-8-hydroxyquinoline	Stary (1964)
	0.50 0.58	2-Methyl-8-hydroxyquinoline	$\left\{\begin{array}{l}\text { Mottola \& Freiser (1966) }\end{array}\right.$
	$0 \cdot 58$	-Methyl-8-hydroxyquinoline	\{Fresco \& Freiser (1964)
	$0.57 *$ 0.56	4-Methylsulphonamides 3-Methylsulphonamides	\} Kakeya \& others (1969)
	0.53	4-Methylbenzylpyridine	Quintana \& Smithfield (1967)
	$0 \cdot 33$	Alkyl sulphates of methyl quinolinium derivatives	Plakogiannis \& others (1970)
Methylene dichloride	$\begin{aligned} & 0.59^{*} \\ & 0.52 \end{aligned}$	4-Methyl-8-hydroxyquinoline 2-Methyl-8-hydroxyquinoline	\}Mottola \& Freiser (1966)
Toluene	$\begin{aligned} & 0.57^{*} \\ & 0.54 \end{aligned}$	4-Methyl-8-hydroxyquinoline 2-Methyl-8-hydroxyquinoline	\} Mottola \& Freiser (1966)
Di-ethyl ether	$\left.\begin{array}{l} 0.49 \\ 0.46 \\ 0.40 \end{array}\right\} \begin{gathered} \text { Steroids } \mathrm{CH}_{3} \text { in } 16 \beta, 6 \alpha-\text { and } \\ 16 \alpha \text {-positions } \end{gathered}$		$\} \text { Flynn (1971) }$
Butanol	$\begin{aligned} & 0.30^{*} \\ & 0.27 \end{aligned}$	4-Methyl-8-hydroxyquinoline 2-Methyl-8-hydroxyquinoline	\} Mottola \& Freiser (1966)
3-Methyl-1-butanol	$\begin{aligned} & 0.40^{*} \\ & 0.34 \end{aligned}$	4-Methyl-8-hydroxyquinoline 2-Methyl-8-hydroxyquinoline	$\}$ Mottola \& Freiser (1966)
4-Methyl-2-pentanol	$\begin{aligned} & 0.38^{*} \\ & 0.36 \end{aligned}$	4-Methyl-8-hydroxyquinoline 2-Methyl-8-hydroxyquinoline	$\} \text { Mottola \& Freiser (1966) }$

Table 2-continued.

Solvent	$\log \mathrm{FCH}_{3}$	Solute system	Reference
1-Octanol	0.68	2-Methylphenoxyacetic acid	
	0.57*	3-Methylphenol	F Fujita \& others (1964)
	0.57*	3-Methylnitrobenzene	
	0.56*	Methylbenzenes	
	0.54*	3-Methylsulphonamides	\}Kakeya \& others (1969)
	$0 \cdot 53$	2-Methylsulphonamides	\{Kakeya \& others (1969)
	0.52*	4-Methylphenoxyacetic acid	
	0.52*	3-Methylbenzoic acid	Frujita \& others (1964)
	0.52*	4-Methylnitrobenzene	
	0.52*	4-Methylethers	<
	$0 \cdot 52$ (a)	3,4-Methylethers	
	0.51 (a)	3,5-Methylethers	Fuller \& others (1968)
	0.51 (a)	3,4,5-Methylethers	
	0.51*	4-Methylsulphonamide	Kakeya \& others (1969)
	0.51*	3-Methylphenoxyacetic acid	
	$0 \cdot 50$ (a)	3,4-Methylphenoxyacetic acid	
	$0 \cdot 50 *$	3-Methylbenzyl alcohol	
	0.50*	3-Methylaniline	
	0.49*	3-Methylphenylacetic acid	FFujita \& others (1964)
	0.49*	4-Methylaniline	
	0.48*	4-Methylbenzyl alcohol	
	0.48*	4-Methylphenol	
	$0 \cdot 47 *$	3-Methylphenol	
	0.47 *	4-Methylphenol	\} Machleidt \& others (1972)
	0.45	3,5-Methylphenol	
	0.45*	4-Methylphenylacetic acid	Fujita \& others (1964)
	0.44*	4-Methyl-8-hydroxyquinoline	Mottola \& Freiser (1966)
	0.42*	4-Methylbenzoic acid	Fujita \& others (1964)
	$0 \cdot 37$	2-Methyl-8-hydroxyquinoline	Mottola \& Freiser (1966)
	$0 \cdot 30$	2,6-Methylphenol	Machleidt \& others (1972)
	0.24	Methyl substituted analgesics	Dearden \& Tomlinson (1971)
Dodecanol	0.40	3-Methylsalicylaldehyde	Burton \& others (1964)
Oleyl alcohol	$\begin{aligned} & 0.61 \\ & 0.56 \end{aligned}$	2-Methylsalicylaldehyde 3-Methylsalicylaldehyde	\}Burton \& others (1964)
n-Butyl acetate	0.61	3-Methylphenols	Ivanov \& Makeikina (1964)
iso-Pentyl acetate	$\begin{aligned} & 0.45^{*} \\ & 0.37 \end{aligned}$	4-Methyl-8-hydroxyquinoline 2-Methyl-8-hydroxyquinoline	\} Mottola \& Freiser (1966)
Methyl dodecanoate	$\begin{aligned} & 0.72 \\ & 0.62 \end{aligned}$	2-Methylsalicylaldehyde 3-Methylsalicylaldehyde	\}Burton \& others (1964)
3-Pentanone	$\begin{aligned} & 0.34 \\ & 0.33^{*} \end{aligned}$	2-Methyl-8-hydroxyquinoline 4-Methyl-8-hydroxyquinoline	$\}$ Mottola \& Freiser (1966)
Cyclohexanone	0.28*	Methylphenoxyacetic acids	Leo \& others (1971)
o-Dichlorbenzene	$\begin{aligned} & 0.53^{*} \\ & 0.52 \end{aligned}$	4-Methyl-8-hydroxyquinoline 2-Methyl-8-hydroxyquinoline	\} Mottola \& Freiser (1966)
Olive oil	0.46*	Alkylbenzenes	Brancha \& O'Brien (1966)

* Preferred value
(a) Value per CH_{3}
fall as the solvent becomes more polar and there are broad qualitative correlations relating group contribution values to dielectric constant, dipole moment and solubility parameter.

Christian, Johnson \& others (1966) noted that the solubility of water in various solvents was a good measure of their relative solvation ability and, Leo, Hansch \& Elkins (1971) have found that partitioning solvents could be ordered sensibly according to the amount of water they contained at saturation. Hence, the inability of a particular solvent to accommodate water is a good measure of its lipophilic behaviour to a wide range of solutes. The present work shows that this is also the

Table 3. Group contributions for the methyl group.

	Solvent		$\log \mathrm{FCH}_{8}(a)$	$\log \mathrm{FCH}_{4}(b)$		Solvent dielectric constant (e)	$\begin{aligned} & \text { Solvent } \\ & \text { dipole } \\ & \text { moment (e) } \end{aligned}$	Solubility of water in solvent (molar) (e)
1.	Carbon tetrachloride	.	0.65	0.62	$8 \cdot 6$	2.24	0	0.0088
2.	Chloroform		$0 \cdot 60$	$0 \cdot 62$	$9 \cdot 3$	4.81	$1 \cdot 15$	0.060
3.	Cyclohexane .		$0 \cdot 60$	$0 \cdot 64$	$8 \cdot 2$	$2 \cdot 02$	0	0.0044
4.	Methylene dichloride	.	$0 \cdot 59$	$0 \cdot 60$	9.7	8.93	$1 \cdot 14$	0.14
5.	Heptane . . .		0.57	0.62	$7 \cdot 5$	1.92	0	0.0035
	Toluene		0.57	$0 \cdot 60$	8.9	$2 \cdot 37$	0.31	0.015
7.	o-Dichlorbenzene		0.53	- 50	10.0	9.93	$2 \cdot 37$	0.22
8.	1-Octanol ..	\cdots	$0 \cdot 50$	$0 \cdot 50$	$10 \cdot 3$	$10 \cdot 34$	1.7	2.3
9.	Olive oil		$0 \cdot 46$	$0 \cdot 53$				
10.	Diethyl ether ..		$0 \cdot 45$	$0 \cdot 56$	7.4	$4 \cdot 34$	$1 \cdot 15$	0.57
	Isopentyl acetate		0.45	-	$8 \cdot 5$	$4 \cdot 60$	1.82	0.77
12.	3-Methyl-1-butanol		$0 \cdot 40$	-	11.1	14.7	$1 \cdot 82$	$4 \cdot 32$
13.	4-Methyl-2-pentanol		0.38	0.51 (c)	10.0			2.85
14.	3-Pentanone ..	\cdots	$0 \cdot 33$	$0 \cdot 33$	8.8	17.0	2.82	$1 \cdot 15$
15.	1-Butanol		$0 \cdot 30$	0.44	11.4	$17 \cdot 5$	1.75	$9 \cdot 2$
16.	Cyclohexanone ..	\cdots	$0 \cdot 28$	---	$10 \cdot 4$	$18 \cdot 3$	3.01	$3 \cdot 59$

(a) Mean of preferred values in Table 2.
(b) Mean of preferred values from Table 5 (Davis \& others, 1972).
(c) Earlier a value of 0.54 was given (Davis \& others, 1972). Further experimental values suggest a value of 0.51 .
(d) Hildebrand \& Scott (1950, 1962), Rheineck \& Lin (1968).
(e) Rididick \& Burger (1970).
case for the functional groups CH_{2} and CH_{3} for as the solubility of water in the solvent increases, the contributions fall. (A detailed statistical analysis of the relation between group contributions and solvent properties using regression analysis will be published elsewhere.)

The $\log \mathrm{F}_{\mathrm{CH}_{3}}$ values are in general slightly smaller than the corresponding log $\mathrm{F}_{\mathrm{CH}_{2}}$ values (Fig. 1). The interrelation is represented by the regression equation

$$
\begin{equation*}
\log \mathrm{F}_{\mathrm{CH}_{3}}=1.12 \log \mathrm{~F}_{\mathrm{CH}_{2}}-0.113 \tag{2}
\end{equation*}
$$

The correlation coefficient $=0.887$; standard deviation $=0.057$; and for 95% confidence limits the slope has a range 0.709 to 1.53 and the intercept a range -0.340 to $0 \cdot 115$. In assuming that $\log \mathrm{F}_{\mathrm{CH}_{3}}=\log \mathrm{F}_{\mathrm{CH}_{2}}$ the error will be small for the CH_{3} group attached to a ring system provided that there is no interaction between functional groups. The slight differences between $\log \mathrm{F}_{\mathrm{CH}_{8}}$ and $\log \mathrm{F}_{\mathrm{CH}_{8}}$ values, where they occur, can be attributed to inductive effects (Marcinkiewicz, Green \& McHale, 1963).

It is unfortunate that results, such as those above for the CH_{3} group attached to a ring system, have been extrapolated to aliphatic compounds and in particular to the CH_{3} group in the terminal position. In this situation $\log \mathrm{F}_{\mathrm{CH}_{2}} \gg \log \mathrm{~F}_{\mathrm{CH}_{2}}$.

(ii) The methyl group in the terminal position in an alkyl chain

The terminal CH_{3} contribution is difficult to calculate as it is not possible to subtract the \log of an activity or partition coefficient for the parent molecule from the \log of the value for the substituted derivative. Moreover, if one extrapolates a free energy versus carbon number plot to zero carbon number (Fig. 2) one must take into account not only the CH_{3} contribution but also the contribution from the polar grouping(s) unless dealing with the unsubstituted alkanes.

If

$$
\begin{equation*}
\Delta \log \gamma_{\mathrm{w}_{\mathrm{CH}}}^{\infty}=\Delta \log \gamma^{\infty}{ }_{\mathrm{w}_{\mathrm{CH}}} \tag{3}
\end{equation*}
$$

a plot of the excess free energy of mixing of various homologous alkanes with water against the number of carbon atoms (Fig. 2) should pass through the origin. Instead, an intercept (some form of CH_{3} correction) of $2.00 \mathrm{kcal} \mathrm{mol}^{-1}$ is found.

A perusal of the physico-chemical data for the CH_{3} (terminal) and CH_{2} groups shows that in all cases the values for CH_{3} are much larger than for CH_{2} (Table 4) and it is difficult to see why many previous workers have ignored all the evidence to this effect. Thus, the extrapolation of activity or partition coefficient data for aliphatic compounds to zero carbon number does not give a group value for the functional group unless one is able to calculate, and correct for, the presence of the terminal CH_{3}. If this is not possible one must quote extrapolated values in a suitable form (e.g. HO . . . H) (Krishnan \& Friedman, 1969).

Table 4. Evidence that aliphatic CH_{2} is not the same as aliphatic CH_{3} terminal.

Parameter	CH_{2}	CH_{3}	Comments	Reference
Size Volume (molar)				
	$10 \cdot 23$	$13 \cdot 67$	$\mathrm{cm}^{3} \mathrm{~mol}^{-1}$	Bondi (1964)
	16.5	$34 \cdot 0$	from models	Rheineck \& Lin (1968)
	$16 \cdot 15$	$32 \cdot 30$	$\mathrm{ml} \mathrm{mol}^{-1}$	Rheineck \& Lin (1968) ${ }_{\text {Papadopoulos \& Derr }}$ (1959)
	16.261	32.837	"	Hirsch (1970)
	$16 \cdot 58$	31.48	"	Exner (1967a)
Parachor	$39 \cdot 7$	$56 \cdot 7$		Exner (1967b)
	$40 \cdot 0$	$55 \cdot 7$		Vogel (1948)
	$40 \cdot 0$	$55 \cdot 5$		Quayle (1953)
	$39 \cdot 0$	$56 \cdot 1$		Sugden (1924)
Area (surface)	$1 \cdot 35$	$2 \cdot 13$	$\} \mathrm{cm}^{2} \mathrm{~mol}^{-1} \times 10^{9}$	Chao \& others (1967)
	1.35	$2 \cdot 12$	$\}$ from models	Bondi (1964)
	$0 \cdot 26$	$0 \cdot 46$	Relative surface	Harris (1971)
			area found from models by packing	
			H atoms around	
			groups	
Area (crosssectional)	$1 \cdot 0$	$1 \cdot 59$	Relative	Papadopoulos \& Derr (1959)
			$\left(\mathrm{CH}_{2}=1.0\right)$	
	0.05	$0 \cdot 11$	nm^{2} from models (area occupied	Pomerantz \& others (1967)
			at interface)	
	6.5	15.0] adsorption	Values calculated from data
	$5 \cdot 0$	11.0	- Van der Waals	summarized by McClellan
	6.0	$8 \cdot 5$	\AA Å models	\& Harnsberger (1967)
	$4 \cdot 6$	11.0	$\left\{\begin{array}{l}\text { from density } \\ \text { measurements }\end{array}\right.$	
Water neighbours	2	at least 8		Nemethy \& others (1963)
	$2+$	$7+$	some water	Laiken \& Nemethy (1970)
			molecules in	
			touch with other	
			groups in solute	
			molecule	
	2	3		Butler (1962)
Thermodynamic quantities	$0 \cdot 22$	$0 \cdot 16$	$\mathrm{kcal} \mathrm{mol}^{-1}$	Krishnan \& Friedman (1969)
	-2.7	$-5 \cdot 8$		Aveyard, Briscoe \& Chapman
			Enthalpy of adhesion	n (1972)
Others	133	214	Molar attraction	Small (1953)
			constant used in	
			solubility para-	
	$1 \cdot 83$	2.56	\AA^{\AA} molecular	
	1.83	2.33	$\}$ polarizability	Padday \& Uffindell (1968)
	$12 \cdot 51$	18.80	Group	Moelwyn-Hughes (1964)
	$4 \cdot 66$	$6 \cdot 34$	Group refractivity	Vogel (1948)

The terminal CH_{3} group correction factor from alkane solubility. Four different approaches used to calculate the CH_{3} correction factor will be considered with reference to data for the alkanols and the OH group contribution (Table 5). The $\mathbf{C H}_{\mathbf{2}}$ contribution (calculated from the gradient of the straight line in Fig. 2) is the same for the alkanes and the alkanols.

A mean CH_{3} (terminal) correction of $1 \cdot 14 \mathrm{kcal} \mathrm{mol}^{-1}$ can be calculated from the values under methods 3 and 4. [Method 4 will give similar values to method 3 but will be limited by the accuracy of the alkane datum. Reliable alkane solubility (and partition data) are difficult to obtain, especially for the higher chain length compounds. Furthermore, above C_{10} the linear relation between $\Delta \mathrm{G}$ and carbon number appears to fall off due to a probable aggregation of the alkane molecules (Franks, 1966; McAuliffe, 1969)]. This indicates that $\Delta(\Delta \mathrm{G})_{\mathrm{CH}_{3}}=2.00 \mathrm{kcal} \mathrm{mol}^{-1}$; a value more than twice that for $\mathrm{CH}_{2}\left(850 \mathrm{cal} \mathrm{mol}^{-1}\right)$. Further verification of this value can be obtained from Tanford's (1962) studies on the solubility of proteins.

The terminal CH_{3} group correction factor from partition studies. The correction values listed in Table 5 were determined from values of the excess free energy of solutes at infinite dilution in water. In partitition studies the differences between the CH_{3} and CH_{2} groups in the organic phase must also be considered. In general, both groups will behave in a more or less ideal manner in all but very polar solvents and the limited evidence available would suggest that, as a first approximation (Ratcliff \& Chao, 1969)

$$
\begin{equation*}
\Delta \log \gamma_{\mathrm{OCH}}{ }^{\infty} \simeq \Delta \log \gamma_{\mathrm{OCH}_{4}}^{\infty} . \tag{4}
\end{equation*}
$$

Fig. 2. The change in free energy with chain length for alkanes and alkanols in water (25°). Abscissa, carbon number. Ordinate, excess free energy ($\Delta \mathrm{G}^{\mathrm{E}}=2 \cdot 303$ RT $\log \gamma_{\mathrm{w}}^{\infty}$) $\mathrm{kcal}_{\mathrm{mol}} \mathrm{mol}^{-1}$. , alkanes-values calculated from data of McAuliffe (1966), Nelson \& De Ligny (1968). ○, Alkanols-values calculated from data of Pierotti \& others (1959a), Butler (1962), Kinoshita \& others (1958). $\log \gamma_{\mathrm{w}}^{\infty}=-\log \mathrm{x}$ where x is mol fraction solubility.

Table 5. Group contributions for the free energy of mixing of the hydroxyl group with water and the terminal CH_{3} correction.

Method	$\begin{aligned} & \Delta\left(\Delta \mathrm{G}^{\mathbf{E}}\right)_{\mathrm{OH}} \\ & (\mathrm{kcal} \mathrm{~mol} \end{aligned}$	Correction for Terminal CH_{3} (kcal mol^{-1})	Comments	Author
1	-0.90	nil	Incorrect Simple extrapolation	Hansch \& Anderson (1967) Copp \& Everett (1953)
2	$-3 \cdot 0$	$2 \cdot 0$	Incorrect Alkane intercept (fig. 1), i.e. $2 \mathrm{CH}_{3}$ groups	Nelson \& de Ligny (1968) Brown \& others (1968) Hansch \& Fujita (1964)
3	$\begin{aligned} & -1.95 \\ & -1.81 \\ & -2.21 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.90 \text { (a) } \\ & 1.33 \\ & 1.43 \text { (a) } \end{aligned}$	Correct ${ }_{2}^{\frac{1}{2}}$ alkane intercept Preference given to higher alkanes	Fig. 1 Nemethy \& others (1963) Molyneux \& others (1965) Mukerjee (1967)
4	$\begin{aligned} & -2.20 \\ & -2.00 \end{aligned}$	$\begin{aligned} & 1 \cdot 19 \\ & 0.99 \end{aligned}$	Correct EtOH- $\frac{1}{2}$ butane $\mathrm{PrOH}-\frac{1}{2}$ hexane	Alexander \& Hill (1969)
Mean	Methods 3 and 4	$1 \cdot 14$		
Protein solubility studies		$1 \cdot 15$	Transfer of lysine and norleucine side chains from water to ethanol and butanol	Tanford (1962)

(a) Value not quoted by original authors; calculated from the experimental data that they provided.

Table 6. Log F_{x} values obtained by differences in partition coefficients (equation 5).

$\begin{aligned} & \text { Group } \\ & \mathrm{COOH} \end{aligned}$	Solvent	$\log \mathrm{K}_{\mathrm{D}_{(\mathrm{RX}}}^{\mathrm{X}}$ (a)	$\log \mathrm{K}_{\mathrm{D}_{(} \mathrm{RH}}^{\mathrm{X}}$ (a)	$\log \mathrm{F}_{\mathrm{x}}$
$\mathbf{R X}=\beta$-Phenyl propionic acid	Octanol	1.84	$3 \cdot 15$	-1.31
$\mathrm{RH}=$ Ethyl benzene	Xylene	$1 \cdot 23$	$4 \cdot 54$ (b)	-3.31
	Chloroform	1.74	4.57 (c)	-2.83
$O H$				
RX = 3-Phenyl propanol	Octanol	$2 \cdot 71$	$4 \cdot 55$	-1.74
RH = Propyl benzene	Hexane	0.95	$4 \cdot 83$ (d)	-3.88

(a) Partition coefficient (25°) were taken from the compilation of Leo $\&$ others (1971) and corrected to mole fraction concentration scale.
(b) Experimental partition coefficient value not available.
$\log K_{D}^{X}$ calculated as $\log \gamma^{\infty_{w}}-\log \gamma^{\infty_{0}}$.
$\log \gamma^{\infty_{w}}=4.54$ (Tsonopoulos, 1970)
$\log \gamma^{\infty}{ }_{0}=0.00$ (estimated from Hildebrand \& Scott (1950)
solubility parameter equation and published values of limiting activity coefficients for benzene-alkyl benzene systems.)
(c) As (b) above. $\log \gamma^{\infty}{ }_{0}=-0.03$ (estimated from solubility parameters and published values of limiting activity coefficients for alkylbenzenes-chloroform systems).
(d) Experimental partition coefficient value not available.
$\log K_{D}^{X}$ calculated as in (b).
$\log \gamma^{\infty}{ }_{w}=5.08$ (Tsonopoulos, 1970).
$\log \gamma^{\infty}{ }_{0}=0.25$ (calculated from data presented by Pierotti \& others (1959a,b).
and a CH_{3} correction factor of $1 \cdot 14 \mathrm{kcal} \mathrm{mol}^{-1}$ should be valid for partition studies provided that one is dealing with reasonably non-polar solvents. [In refined statistical thermodynamic treatments of solution behaviour the differences between CH_{2} and CH_{3} are taken into account even for inert solvents (Orwoll \& Flory, 1967).]

It could be advanced that the calculation of a CH_{3} correction factor from data on the alkanes is invalid as the interaction of the terminal CH_{3} attached to a polar aliphatic compound may be different from that attached to an alkane; perhaps through an interaction of the polar function with the hydrogen bonded water 'icebergs' around the hydrocarbon moiety (Frank \& Evans, 1945). Consequently, a CH_{3} correction factor has been calculated from partition data without using information on alkanes.

We showed that there is no terminal CH_{3} effect for the alkyl benzenes (Table 1) and that $\log \mathrm{F}_{\mathrm{CH}_{3}} \simeq \log \mathrm{~F}_{\mathrm{CH}_{2}}$. Thus group contributions for polar groups $(\mathrm{OH}, \mathrm{COOH})$ can be obtained from a difference in the log of partition coefficients provided that there are at least two CH_{2} groups between the benzene ring and the polar function to destroy any spurious effects due to resonance (Iwasa, Fujita \& Hansch, 1965).

$$
\begin{equation*}
\text { e.g. } \quad \log \mathrm{F}_{\mathrm{COOH}}=\log \mathrm{K}_{\mathrm{D}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)}-\log \mathrm{K}_{\mathrm{D}\left(\mathrm{C}_{\mathrm{G}} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)} \tag{5}
\end{equation*}
$$

On the other hand, group values obtained from alkyl compounds by extrapolation to zero carbon will be a combination of the polar group value and the CH_{3} correction. Therefore, a comparison of the group values obtained by the two different methods will allow one to calculate the CH_{3} term.

First, we must consider the standard state (concentration scale) used in partition studies (Davis, unpublished). When $\log \mathrm{F}$ values are calculated by differences in partition coefficients they will be concentration scale independent because any conversion terms will simply cancel out. However, when $\log \mathrm{F}$ values are obtained by extrapolation they will be concentration scale dependent. It is generally agreed that, for the distribution of solutes between organic and aqueous phases, the difference in unitary free energy (calculated from the thermodynamic partition coefficient) can be considered to be additively composed of contributions from the functional groups (Mukerjee, 1967; Aveyard \& Mitchell, 1969; Hersh, 1971). Therefore, in our studies it is nesessary to convert partition coefficients on the molar scale ($\mathrm{K}_{\mathrm{D}}^{\mathrm{m}}$) to the mole fraction scale ($\mathrm{K}_{\mathrm{D}}^{\mathrm{x}}$).

Log F values for the COOH and OH groups for four solvent systems obtained from
Table 7. Log F_{x} values obtained by extrapolation of \log partition coefficient vs carbon number plots to zero carbon number.

Carbon number	Partition coefficient $\log \mathrm{K}_{\mathrm{D}}^{\mathrm{X}}$ (a)				
		Alkanoic a			
	Octanol	Xylene	Chloroform	Octanol	Hexane
1		-	-	0.01	-
2	$0 \cdot 59$	-1.08	-0.76	$0 \cdot 51$	- 1.39
3	$1 \cdot 12$	-0.49	-0.17	$1 \cdot 17$	-0.61
4	$1 \cdot 62$	$0 \cdot 03$	$0 \cdot 40$	1.71	$0 \cdot 09$
5	-	$0 \cdot 50$	1.03.	1.99	-
6	$2 \cdot 37$	$1 \cdot 18$	1.61	2.86	
$\log \mathrm{F}_{\mathrm{x}}$	-0.45	-2.27	-1.94	-0.65	-2.83

[^0]Table 8. The CH_{3} correction term ($\log F$) calculated from partition studies.

Solvent	Group	Difference (Table 6)		Extrapolation (Table 7)
Octanol	COOH	-1.31	-0.45	$\mathrm{CH}_{\mathbf{x}}$ correction (log F)
Xylene	OH	-1.74	-0.67	0.86
Chloroform	COOH	-3.31	-2.27	1.07
Hexane	COOH	-2.83	-1.93	1.04
	OH	-3.88	-2.83	0.90
			Mean	\ldots
			\ldots	0.98

phenyl alkyl derivatives by difference $\left(\mathrm{CH}_{2}\right.$ equals $\left.\mathrm{CH}_{3}\right)$ are given in Table 6 and from alkyl derivatives by extrapolation $\left(\mathrm{CH}_{2}\right.$ not equal to $\left.\mathrm{CH}_{3}\right)$ in Table 7. The extrapolated values will be a combination of the functional group contribution (OH or COOH) and CH_{3} correction. The latter can be found by subtracting the $\log \mathrm{F}$ values found by difference from $\log \mathrm{F}$ values found by extrapolation (Table 8). There is some scatter in these CH_{3} corrections but the agreement between the different solvents is considered to be satisfactory. The mean value provides CH_{3} free energy correction of $1.34 \mathrm{kcal} \mathrm{mol}^{-1}$ which compares well with the mean value of $1.14 \mathrm{kcal} \mathrm{mol}^{-1}$ given in Table 5.

As yet it is not possible to arrive at any conclusions about the effect of organic solvent on the CH_{3} correction, nevertheless, we would predict that the CH_{3} correction term would become smaller as the organic solvent became more polar and more similar to an aqueous environment.

CONCLUSIONS

Studies on the thermodynamics of the solution and partitioning processes indicate that, unlike the CH_{2} group, the CH_{3} group cannot be ascribed a single group contribution value for a given solvent system. Its group value depends on its position in the drug molecule. If the CH_{3} is attached to a ring system it has a group molar volume similar to the CH_{2} group ($16.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$) and has a similar thermodynamic group contribution to the solubility and partition equilibria. In partition of a drug from aqueous to organic phase the CH_{3} group contributions (expressed as $\log \mathrm{F}$) are dependent on the polarity of the organic phase and there is satisfactory correlation between CH_{3} and CH_{2} values through the regression equation

$$
\log \mathrm{F}_{\mathrm{CH}_{3}}=1 \cdot 12 \log \mathrm{~F}_{\mathrm{CH}_{3}}-0.113
$$

The CH_{3} group in the terminal position in an aliphatic chain is almost twice as large as the CH_{3} group attached to a ring system and this is reflected in a much larger group contribution. The assumption, that is often made in structure-activity studies, that the aromatic and aliphatic CH_{3} are equivalent can lead to serious errors.
An aliphatic CH_{3} correction factor can be calculated from data on the solubility of alkanes (and proteins) and in terms of free energy is equivalent to a contribution of $1.14 \mathrm{kcal} \mathrm{mol}^{-1}$. A somewhat higher value of $1.34 \mathrm{kcal} \mathrm{mol}^{-1}$ can be calculated from limited data on partition and activity coefficients provided that due consideration is given to the correct choice of standard state for the partition studies.

The partition coefficient of an aliphatic compound, on the mol fraction scale, distributed between water and a more or less non-polar solvent can be written as:

$$
\begin{equation*}
\log \mathrm{K}_{\mathrm{D}}^{\mathrm{X}}\left(\mathrm{C}_{\left.\mathrm{n} \mathrm{H}_{2} \mathrm{n}_{+1} \mathrm{x}\right)}=\log \mathrm{F}_{\mathrm{x}}+\mathrm{n} \log \mathrm{~F}_{\mathrm{CH}_{3}}+\log \mathrm{F}_{\mathrm{CH}_{3}(\text { CORRECTON })}\right. \tag{6}
\end{equation*}
$$

and in terms of Hansch's π constant (molar concentration scale) as

$$
\begin{equation*}
\left.\log \mathrm{K}_{\mathrm{D}}^{\mathrm{m}}{ }_{\left(\mathrm{CAH}_{20+}+1\right.} \mathrm{x}\right)=\pi_{\mathrm{x}}+\mathrm{n} \pi_{\mathrm{CH}_{2}}+\pi_{\mathrm{CH}_{2}(\text { CORRECTION })}-\log \left(V_{\mathrm{o}} / V_{\mathrm{w}}\right) \ldots \tag{7}
\end{equation*}
$$

Interestingly, the term $\log \left(V_{\mathrm{o}} / V_{\mathrm{w}}\right)=0.94$ for the octanol-water system and thus for aliphatic compounds only

$$
\begin{equation*}
\log \mathrm{K}_{\mathrm{D}}^{\mathrm{m}} \simeq \pi_{\mathrm{x}}+\mathrm{n} \pi_{\mathrm{CH}_{2}} \ldots \tag{8}
\end{equation*}
$$

REFERENCES

Alexander, D. M. \& Hill, D. J. T. (1969). Aust. J. Chem., 22, 347-356.
Aveyard, R., Briscoe, B. J. \& Chapman, J. (1972). J. chem. Soc. Faraday Trans., I, 68, 10-16.
Aveyard, R. \& Mitchell, R. W. (1969). Trans. Faraday Soc., 65, 2645-2653.
Bondi, A. (1964). J. phys. Chem., 68, 441-451.
Brancha, P. \& O'Brien, R. D. (1966). J. econ. Ent., 59, 1255-1264.
Brown, I., Chapman, I. L. \& Nicholson, G. J. (1968). Aust. J. Chem., 21, 1125-1141.
Burton, D. E., Clarke, K. \& Gray, G. W. (1964). J. chem. Soc., 1314-1318.
Butler, J. A. V. (1962). Chemical Thermodynamics, 5th Ed., p. 380. London: Macmillan.
Chao, K. C., Robinson, R. L., Smith, M. L. \& Kuo, C. M. (1967). Chem. Eng. Prog. Symp. Series, 63, (81), 121-127.
Christian, S. D., Johnson, J. R., Affsprung, H. E. \& Kilpatrick, P. J. (1966). J. phys. Chem., 70, 3376-3377.
Copp, J. L. \& Everett, D. H. (1953). Disc. Faraday Soc., 15, 268-269.
Currie, D. J., Lough, C. E., Silver, R. F. \& Holmes, H. L. (1966). Can. J. Chem., 44, 1035-1043.
Davis, S. S., Higuchi, T. \& Rytiing, J. H. (1972). J. Pharm. Pharmac., 24, Suppl. 30P-46P.
De Ligny, C. L., Kreutzer, J. H. \& Visserman, G. F. (1966). Rec. Trav. chim. Pays-Bas, 85, 5-14.
Dearden, J. C. \& Tomlinson, E. (1971). J. Pharm. Pharmac., 23, 73S-76S.
Exner, O. (1967a). Colln Czech. chem. Commun., 32, 1-23.
Exner, O. (1967b). Ibid., 32, 24-55.
Flynn, G. L. (1971). J. pharm. Sci., 60, 345-353.
Frank, H. S. \& Evans (1945). J. Chem. Phys., 13, 500-532.
Franks, F. (1966). Nature, 210, 87-88.
Fresco, J. \& Freiser, H. (1964). Analyt. Chem., 36, 631-633.
Fujita, T., Iwasa, J. \& Hansch, C. (1964). J. Am. chem. Soc., 86, 5175-5180.
Fuller, R. W., Marsh, M. M. \& Mills, J. (1968). J. medl Chem., 11, 397-398.
Golumbic, C. \& Goldbach, G. (1951). J. Am. chem. Soc., 73, 3966-3967.
Golumbic, C., Orchin, M. \& Weller, S. (1949). Ibid., 71, 2624-2627.
Hansch, C. \& Anderson, S. M. (1967). J. org. Chem., 32, 2583-1586.
Hansch, C. \& Fuitita, T. (1964). J. Am. chem. Soc., 86, 1616-1626.
Hansch, C., Steward, A. R., Anderson, S. M. \& Bentley, D. (1957). J. medl Chem., 11, 1-11.
Harris (1971). Ph.D. Dissertation, University of Kansas.
Hersh, L. S. (1971). In The Chemistry of Biosurfaces. Vol. I. Editor: Hair, M. L., pp. 349-376. New York: Dekker.
Higuchi, T., Richards, J. H., Davis, S. S., Kamada, G., Hou, J. P., Nakano, M., Nakano, N. I. \& Pitman, I. H. (1969). J. pharm. Sci., 58, 661-671.

Hildebrand, J. H. \& Scott, R. L. (1950). Solubility of Non-electrolytes. 3rd Edn. New York: Reinhold.
Hildebrand, J. H. \& Scott, R. L. (1962). Regular Solutions. Englewood, N.J.: Prentice Hall Hirsch, E. (1970). Analyt. Chem., 42, 1326-1329.
Ivanov, B. I. \& Makeikina, V. V. (1964). Tr. Vses. i Ispolz. Topliva., 13, 171-184. Chem. Abs., 62, 15896b.
Imasa, J., Fujita, T. \& Hansch, C. (1965). J. medl Chem., 8, 150-153.
Kakeya, N., Yata, N., Kamada, A. \& Aoki, M. (1969). Chem. Pharm. Bull., 17, 2558-2564.
Kakovsky, I. A. (1957). Proc. 2nd Intern. Cong. Surface Activity, 4, 225-237.

Kinoshita, K., Ishikawa, H. \& Shinoda, K. (1968). Bull. chem. Soc. Japan, 31, 1081-1082.
Krishnan, C. V. \& Friedman, H. L. (1969). J. phys. Chem., 73, 1572-1580.
Laiken, N. \& Nemethy, G. (1970). Ibid., 74, 3501-3509.
Landolt-Bornstein (1960). Tabellen 6. Vol. II. Part 2C. 222642 Verteilungskoeffizienten., pp. 698-731.
Leo, A., Hansch, C. \& Elkins, D. (1971). Chem. Rev., 71, 525-616.
Lien, E., Koda, R. T. \& Tong, G. L. (1971). Drug. Intel., 5, 38-41.
lough, C. E., Silver, R. E. \& McCluskey, F. K. (1968). Can. J. Chem., 46, 1943-1944.
McAuliffe, C. (1966). J. phys. Chem., 70, 1267-1275.
McAuliffe, C. (1969). Science, 158, 478-479.
McClellan, A. L. \& Harnsberger, H. F. (1967). J. Colloid. Inter. Sci., 23, 577-599.
Machleidt, H., Roth, S. \& Seeman, P. (1972). Biochim. Biophys. Acta, 255, 178-189.
Marcinkiewicz, S., Green, J. \& McHale, D. (1963). J. Chromatog., 10, 42-67.
Moelwyn-Hughes, E. A. (1964). Physical Chemistry, 2nd Edn. Oxford: Pergamon.
Molyneux, P., Rhodes, C. T. \& Swarbrick, J. (1965). Trans. Faraday Soc., 61, 1043-1052.
Mottola, H. A. \& Freiser, H. (1966). Talanta, 13, 55-56.
Mukerjee, P. (1967). Advan. Colloid. Inter. Sci., 1, 241-275.
Nelson, H. D. \& De Ligny, C. L. (1968). Rec. Trav. Chim., 87, 623-640.
Nemethy, G., Steinberg, I. Z. \& Scheraga, H. A. (1963). Biopolymers, 1, 43-69.
Orwoll, R. A. \& Flory, P. J. (1967). J. Am. chem. Soc., 89, 6814-6822.
Padday, J. F. \& Uffindell, N. D. (1968). J. phys. Chem., 72, 1411-1414.
Papadopoulos, M. N. \& Derr, E. L. (1959). J. Am. chem. Soc., 51, 2285-2289.
Pierotti, G. J., Deal, C. H. \& Derr, E. L. (1959a). Ind. Engng Chem., 51, 95-102.
Pierotti, G. J., Deal, C. H. \& Derr, E. L. (1959b). American Documentation Institute, Document 5782.

Plakogiannis, F. M., Lien, E. J., Harris, C. \& Biles, J. A. (1970). J. pharm. Sci., 59, 197-200.
Pomerantz, P., Clinton, W. C. \& Zisman, W. A. (1967). J. Colloid Inter. Sci., 24, 16-28.
Quayle, O. R. (1953). Chem. Rev., 53, 439-489.
Quintana, R. P. \& Smithfield, W. R. (1967). J. medl Chem., 10, 1178-1180.
Ratcliff, G. A. \& Chao, K. C. (1969). Can. J. Chem. Eng., 47, 148-153.
Rheineck, A. E. \& Lin, K. F. (1968). J. Paint. Technol., 40, 611-616.
Riddick, J. A. \& Burger, W. B. (1970). Techniques in Chemistry. Vol. II. Organic Solvents.
Physical Properties and Methods of Purification. 3rd Edn. New York: Wiley-Interscience.
Ryting, H., Davis, S. S. \& Higuchi, T. (1972). J. pharm. Sci., 61, 816-818.
Small, P. A. (1953). J. appl. Chem., 3, 71-80.
Stary, J. (1964). The Solvent Extraction of Metal Chelates. Oxford. Pergamon.
Sugden, S. (1924). J. chem. Soc., 1177-1189.
Tanford, C. (1962). J. Am. chem. Soc., 84, 4240-4247.
Tsonopoulos, C. (1970). Ph.D. Dissertation. University of California.
Vogel, A. I. (1948). J. chem. Soc., 1833-1855.

[^0]: (a) Partition coefficient values were taken from the compilations of Landolt-Bornstein (1960) and Leo \& others (1971). Where necessary reported values were corrected for effects due to ionization and association and are expressed in terms of mole fraction concentrations. When more than one value was reported a mean or weighted mean was calculated.

